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Pour z réel, on a
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car l’expression intégrée n’est autre que la densité de la loi N (z, 1). Mais si
deux fonctions holomorphes coïncident sur R, elles coïncident sur C. On a donc

∀z ∈ C,
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On particularise alors z en it, t étant réel, et on obtient

ϕX(t) = 1√
2π

∫
R

exp(−x2/2) exp(itx) dx = exp
(

− t2

2

)
.

Méthode 2 : utilisation d’une équation différentielle.
On pose gt(x) = eitx. On a ϕX(t) = E[gt(X)]. Avec l’aide du théorème de
dérivation sous le signe intégrale, on montre facilement que

ϕ′
X(t) = 1√

2π

∫
R

exp(−x2/2)ix exp(itx) dx = iE[Xgt(X)].

Mais d’après la formule d’intégration par parties de la variable gaussienne (vue
au lemme 6.11.1), on a E[Xgt(X)] = E[g′

t(X)]. Cependant, pour tout x réel,
on a g′

t(x) = itgt(x), d’où

ϕ′
X(t) = iE[Xgt(X)] = iE[g′

t(X)] = iE[itgt(X)] = −tE[gt(X)] = −tϕX(t).

L’équation différentielle se résout classiquement.
On pose F (t) = exp(t2/2)ϕX(t). On a F (0) = 1 et F ′(t) = 0, donc F est
constante égale à un, ce qui donne ϕX(t) = exp(−t2/2).

Pour passer au cas général, on pose Y = σX + m ; on a Y ∼ N (m,σ2),
et alors ϕY (t) = EeitY = eit(σX+m) = eimtEeitσX = eimtϕX(σt) = eimte− σ2t2

2 .


